2,017 research outputs found

    Pseudo-digital quantum bits

    Get PDF
    Quantum computers are analog devices; thus they are highly susceptible to accumulative errors arising from classical control electronics. Fast operation--as necessitated by decoherence--makes gating errors very likely. In most current designs for scalable quantum computers it is not possible to satisfy both the requirements of low decoherence errors and low gating errors. Here we introduce a hardware-based technique for pseudo-digital gate operation. We perform self-consistent simulations of semiconductor quantum dots, finding that pseudo-digital techniques reduce operational error rates by more than two orders of magnitude, thus facilitating fast operation.Comment: 4 pages, 3 figure

    Efficient Database Generation for Data-driven Security Assessment of Power Systems

    Full text link
    Power system security assessment methods require large datasets of operating points to train or test their performance. As historical data often contain limited number of abnormal situations, simulation data are necessary to accurately determine the security boundary. Generating such a database is an extremely demanding task, which becomes intractable even for small system sizes. This paper proposes a modular and highly scalable algorithm for computationally efficient database generation. Using convex relaxation techniques and complex network theory, we discard large infeasible regions and drastically reduce the search space. We explore the remaining space by a highly parallelizable algorithm and substantially decrease computation time. Our method accommodates numerous definitions of power system security. Here we focus on the combination of N-k security and small-signal stability. Demonstrating our algorithm on IEEE 14-bus and NESTA 162-bus systems, we show how it outperforms existing approaches requiring less than 10% of the time other methods require.Comment: Database publicly available at: https://github.com/johnnyDEDK/OPs_Nesta162Bus - Paper accepted for publication at IEEE Transactions on Power System

    A New Control Structure for Multi-Terminal dc Grids to Damp Inter-Area Oscillations

    Get PDF

    Security analysis of interconnected AC/DC systems

    Get PDF

    Effect of uniaxial strain on the site occupancy of hydrogen in vanadium from density-functional calculations

    Full text link
    We investigate the influence of uniaxial strain on site occupancy of hydrogen vanadium, using density functional theory. The site occupancy is found to be strongly influenced by the strain state of the lattice. The results provide the conceptual framework of the atomistic description of the observed hysteresis in the alpha to beta phase transition in bulk, as well as the preferred octahedral occupancy of hydrogen in strained V layers

    Interaction of Droop Control Structures and its Inherent Effect on the Power Transfer Limits in Multi-terminal VSC-HVDC

    Get PDF
    Future multiterminal HVDC systems are expected to utilize dc voltage droop controllers, and several control structures have been proposed in the literature. This paper proposes a methodology to analyze the impact of various types of droop control structures using small-signal stability analysis considering all possible combinations of droop gains. The different control structures are evaluated by the active power transfer capability as a function of the droop gains, considering various possible stability margins. This reveals the flexibility and robustness against active power flow variations, due to disturbances for all of the implementations. A case study analyzing a three-terminal HVDC VSC-based grid with eight different kinds of droop control schemes points out that three control structures outperform the remaining ones. In addition, a multivendor case is considered where the most beneficial combinations of control structures have been combined in order to find the best performing combination
    corecore